Formation control of off-road fleet of UGVs: issues, advances and applications
Introduction

Autonomous vehicle nowadays
- From dream to actual applications

- Several “well-addressed” issues
 - navigation
 - Perception
 - Control aspects

Some open issues remaining
- Human machine interaction
- Sensor and material costs
- Related to All-terrain context
 - Control and positioning accuracy
 - Harsh conditions (terrain geometry, grip conditions)
 - Extending area to be covered

- Extend speed
- Extend number of robots
Introduction

Extend speed of off-road robots
- Face high dynamical effects
 - Inertial effects
 - Low grip conditions
- Important Safety issues
 - Risk of controllability loss
 - Risk of rollover pending on terrain conditions
 - Obstacle avoidance becomes critical

Several robots under cooperation
- Permits to consider limited speed
- High dynamics phenomena neglected
- Several point of views to preserve efficiency

Swarm robotics

Formation Control

Number of robots scale of robots
Formation control objectives

Several points of view related to cooperation

- Independent control
 - All of robots has its own area
 - Few interaction
 - Separate work

- Robots work together
 - May be associated to achieve a bigger task
 - May be controlled or supervised
 - May achieved complementary works

Coordinated control under some formation

- Preserve repeatability
- Ensure a high level of accuracy
- Preserve its integrity and safety
- Have to be adaptable (variable shape)

Field covering Unloading (virtual link) Back home
Overview

Classical motion control of robots

- Classical mobile robot modelling
- Limitations and accuracy requirements

Modeling in off-road conditions

- Extended kinematic model of a fleet of robots
- Observation of bad grip conditions

Control under bad grip conditions

- Lateral dynamic control
 - Extension of a single robot approach
 - Desired set point computation
 - Predictive approach
- Longitudinal dynamic control
 - Reactive approach
 - Relation with other robots
 - Predictive approach and motion anticipation

Extension to target tracking

- Common framework
- Algorithm generalization
Formation control issues in off-road context

Harsh and variable conditions
- Environments and terrain properties
- Robot design and capabilities
- Perception and communication state
- Phenomena to be accounted?

Overview of the control approach
- Modeling of the fleet
- Adaptive layer
- Predictive layer

\[
\delta = \frac{x_{\text{obs}} - f_{\text{obs}}(x_{\text{obs}}, u_{\text{obs}})}{\hat{\beta}^F, \hat{\beta}^R}
\]

Observer law (sliding var.)

Control law

Actual process

Sensor: RTK-GPS

Reference

Leader Data
Modeling of robots formation

Formalism in the path tracking framework

- Considers n>1 robots
 - Let us take 2 successive robots Robots \(i \) and \(i+1 \).
- Assumption 1: longitudinal and lateral dynamics are independent
 - Speed variation does not affect lateral performances
 - This is ensured for a single robot by the control law formalism
- Assumption 2: Rolling without sliding conditions

\[
\begin{align*}
\dot{s} &= v \frac{\cos(\tilde{\theta} + \delta_R)}{1 - c(s)y} \\
\dot{y} &= v \sin(\tilde{\theta} + \delta_R) \\
\dot{\tilde{\theta}} &= v \left[\cos(\delta_R) \frac{\tan(\delta_F) - \tan(\delta_R)}{L} - c(s) \frac{\cos(\tilde{\theta} + \delta_R)}{1 - c(s)y} \right]
\end{align*}
\]
Classical path tracking control

Satisfactory when assumptions are valid
Classical path tracking control

Satisfactory when assumptions are valid

Unsuitable when running on natural ground [depends on speed!]
Theoretical influence on formation control

Motion at 3 m/s

- Global path tracking with a stopping vehicle and 5 robots
 - Relative positioning and servoing
 - Longitudinal distance of 3m
 - Lateral: -2, +2, 0, 0.

- Simulation using ideal conditions

- Ideal localization perception
- Ideal communications
- Ideal grip conditions
- Ideal actuators
Theoretical influence on formation control

Motion at 3 m/s

- Global path tracking with a stopping vehicle and 5 robots
 - Relative positioning and servoing
 - Longitudinal distance of 3m
 - Lateral: -2, +2, 0, 0.

- Simulation using ideal grip conditions, actuators, sensors and communication

- Simulation using bad grip conditions, delayed sensor and perception
Overview

Classical motion control of robots
- Classical mobile robot modelling
- Limitations and accuracy requirements

Modeling in off-road conditions
- Extended kinematic model of a fleet of robots
- Observation of bad grip conditions

Control under bad grip conditions
- Lateral dynamic control
 - Extension of a single robot approach
 - Desired set point computation
 - Predictive approach
- Longitudinal dynamic control
 - Reactive approach
 - Relation with other robots
 - Predictive approach and motion anticipation

Extension to target tracking
- Common framework
- Algorithm generalization
Modeling of robots formation

Extended model

- Considers \(n > 1 \) robots
 - Let us take 2 successive robots \(i \) and \(i+1 \).

- Assumption 1: longitudinal and lateral dynamics are independent
 - Speed variation does not affect lateral performances
 - This is ensured for a single robot by the control law formalism

- Assumption 2: Rolling without sliding conditions

\[
\begin{align*}
\dot{s} &= V_r \frac{\cos(\delta + \delta_R - \beta_R)}{1 - c(s)} y \\
\dot{y} &= V_r \sin(\delta + \delta_R - \beta_R) \\
\dot{\theta} &= V_r \left[\cos(\delta_R - \beta_R) \lambda_1 - \lambda_2 \right]
\end{align*}
\]
Sideslip angle observation (virtual measure)

General scheme of observation

- A second loop is designed
 - Convergence of model output to measure
 - Using sideslip angles computation
- Assumptions for reconstruction
 - Convergence of model output to measure
 - Using sideslip angles computation

Observer design

Measured state: \(\dot{X} = \begin{bmatrix} \dot{y} \\ \dot{\theta} \end{bmatrix} \)

Derivative:

\[
\dot{X} = \begin{bmatrix} \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{v \sin (\hat{\theta} + \delta_R + \beta_R)}{\cos(\delta_R + \beta_R)} - \frac{v \sin (\hat{\theta} + \delta_R + \beta_R)}{L} \\
\frac{v \cos(\delta_R + \beta_R) \left(\tan \delta_F + \beta_F - \tan \delta_R + \beta_R \right) - c(s) v \cos(\hat{\theta} + \delta_R + \beta_R)}{1 - c(s) y} \end{bmatrix}
\]
Modeling of robots formation

Motion model stay unchanged

- For the \(i \)th robot
 - Controls: velocity, steering angles(s)
 - State: Cirv. Absc. lateral + angular deviations

- Kinematic model is let unchanged

\[
\dot{X} = \begin{bmatrix}
\dot{s} \\
\dot{y} \\
\dot{\theta}
\end{bmatrix} = \begin{bmatrix}
v \cos(\hat{\theta}+\delta_k+\beta_R) \\
v \cos(\delta_k+\beta_R) - \tan \delta_k \tan \beta_R - c(s) v \cos(\hat{\theta}+\delta_k+\beta_R) \\
v \cos(\delta_k+\beta_R) - \tan \delta_k \tan \beta_R - c(s) v \cos(\hat{\theta}+\delta_k+\beta_R)
\end{bmatrix}
\]

- In counterpart the set point changes to describe relative positions
 - Lateral deviation may defined different from zero and variable
 - The velocity may be computed to ensure longitudinal distances

- Control objectives
 - Lateral:
 \[y_{i+1} \rightarrow y^d(y_i) \]
 - Longitudinal: servo the curvilinear distance
 \[s_i - s_{i+1} \rightarrow d_i \]
Overview

Classical motion control of robots

- Classical mobile robot modelling
- Limitations and accuracy requirements

Modeling in off-road conditions

- Extended kinematic model of a fleet of robots
- Observation of bad grip conditions

Control under bad grip conditions

- Lateral dynamic control
 - Extension of a single robot approach
 - Desired set point computation
 - Predictive approach

- Longitudinal dynamic control
 - Reactive approach
 - Relation with other robots
 - Predictive approach and motion anticipation

Extension to target tracking

- Common framework
- Algorithm generalization
Lateral dynamic control

The same principle as for a single robot may be used

- Control objective \(y_i \rightarrow y_i^d \)
 - Whatever the speed
 - Whatever the potential rear steering angle
 - Knowing the grip conditions

- Using exact linearization
 - Variable transformation
 \[
 [s_i, y_i, \theta_i] \rightarrow [a_{1i}, a_{2i}, a_{3i}] = [s_i, y_i, (1 - c(s_i) y_i) \tan(\theta_i + \beta_i^R)]
 \]
 \[
 [\bar{u}_i, \delta_i] \rightarrow [m_{1i}, m_{2i}] = \left[\frac{\bar{v}_i \cos(\theta + \beta_i^R)}{1 - c(s_i) y_i}, \frac{d a_{3i}}{dt} \right]
 \]
 - Chained system form \(\rightarrow \) derivative w.r.t curvilinear abscissa
 \[
 \begin{align*}
 \dot{a}_{1i} &= \frac{da_{1i}}{dt} = m_{1i} \\
 \dot{a}_{2i} &= \frac{da_{2i}}{dt} = a_{3i} m_{1i} \\
 \dot{a}_{3i} &= \frac{da_{3i}}{dt} = m_{2i}
 \end{align*}
 \]
 - Virtual control law
 \[
 m_{3i} = -K_d(a_{3i} - y_i^d) - K_p(a_{2i} - y_i^d) + y_i^{nd} \quad (K_d, K_p > 0)
 \]
 \[
 \dot{\epsilon}_i^y + K_d \epsilon_i^y + K_p \epsilon_i = 0 \quad \text{with} \quad \epsilon_i = a_{2i} - y_i^d
 \]
Lateral dynamic control

Computation for a given robot i

- Control design

 Expression

 $$m_{3i} = -K_d(a_{3i} - y_{i}^d) - K_p(a_{2i} - y_{i}^d) + y_{i}^{ud} \quad (K_d, K_p > 0)$$

 Reverse transformation

 $$[s_i, y_i, \dot{\theta}_i] \rightarrow [a_{1i}, a_{2i}, a_{3i}] = [s_i, y_i, (1 - c(s_i)y_i)\tan(\dot{\theta}_i + \beta_i^R)]$$
 $$[v_i, \delta_i] \rightarrow [m_{1i}, m_{2i}] = \left[\frac{v_i}{1 - c(s_i)y_i} \frac{\dot{\theta}_i}{\beta_i^R} \right]$$

 Steering angle control law

 $$\delta_i = \arctan\left\{ \tan(\beta_i^R) + \frac{l}{\cos(\beta_i^R)} \left(\frac{c(s_i)\cos(\dot{\theta}_i^R)}{\alpha_i} + \ldots \right. \right.$$
 $$\left. \left. \ldots \frac{A_i \cos(\delta_i)}{v_i \alpha_i^2} \left(\dot{\theta}_i^R\right) \right\} + \beta_i^F,$$

 $$\begin{align*}
 \tilde{\theta}_i &= \dot{\theta} + \beta_i^R \\
 \alpha_i &= 1 - c(s_i)y_i \\
 A_i &= -K_p c_i^y - K_d \alpha_i \eta + c(s_i)\alpha_i \eta \tan(\tilde{\theta}_i^2) \\
 \eta &= \left(\frac{\tan(\tilde{\theta}_i^2) - \frac{y_i^d}{v_i \cos(\tilde{\theta}_i^2)}}{v_i \cos(\tilde{\theta}_i^2)} \right) \\
 \psi &= 1 + \tan^2(\tilde{\theta}_i^2) - \frac{y_i^d \tan(\tilde{\theta}_i^2)}{v_i \cos(\tilde{\theta}_i^2)}
 \end{align*}$$

- Based on the same assumption and methodology than for a single robot with set points

 - Settling distance is theoretically independent from velocity
 - Convergence to a desired lateral distance
 - Actuator settling time and delays are neglected

How the relationship with others is ensured ??????
Lateral dynamic control

Lateral desired set point account for other robot

- Several points of view may be investigated
 - Defined with respect to common reference path
 - Defined with respect to previous robot deviation

Example of a mixed definition

\[y_i^d = \bar{d}_i^y + \sigma [y_{i-1} - \bar{d}_{i-1}^y] \]

\sigma = 0
Robots move independently

\sigma = 1
Robots move w.r to previous one

Perfect multi robot field covering
Platooning
Coming back home

Hazardous robot field covering
Virtual link
Independent tracking

Depends on previous behaviour
Lateral dynamic control

Control strategy

- Path tracking based approach using a common reference
- A non null desired distance is defined
- Lateral control law is slightly modified, but methodology is preserved
Lateral dynamic control

Control strategy

- Path tracking based approach using a common reference
- A non null desired distance is defined
- Lateral control law is slightly modified, but methodology is preserved

Extensions

- Predictive control may be used if future trajectory is available (see next part)

Ensemble diagram:

- Reactive term x_i
- Separation
- Ref path
- Future curvature
- Predictive minimization
- Predictive control

- Introduction of a composite error pending on other robots deviation
 - Let us define several errors with other robots
 - Define a global error as a linear combination of elementary errors
 - Key issue: defined a rule for varying coefficient
Lateral dynamic control

Actual results

- B/ Prediction addon interest

- speed: 2m/s

Communication WIFI

1. Constant desired deviation at 2m, and -3m
Overview

Classical motion control of robots

- Classical mobile robot modelling
- Limitations and accuracy requirements

Modeling in off-road conditions

- Extended kinematic model of a fleet of robots
- Observation of bad grip conditions

Control under bad grip conditions

- Lateral dynamic control
 - Extension of a single robot approach
 - Desired set point computation
 - Predictive approach
- Longitudinal dynamic control
 - Reactive approach
 - Relation with other robots
 - Predictive approach and motion anticipation

Extension to target tracking

- Common framework
- Algorithm generalization
Longitudinal dynamic control

Velocity control

- Velocity servoing objective: \(s_i - s_{i+1} \to d_i \)
 - Ensure a curvilinear distance
 - Whatever the lateral position
 - Whatever the grip condition

- With respect to the previous robot

 Error definition
 \[
 e_{i+1} = s_i - s_{i+1} - d_i
 \]

 Desired behavior for the convergence of the defined error to zero
 \[
 \dot{e}_{i+1} = K_{i+1} e_{i+1}
 \]

 Time derivative (or derivative w.r. to curvilinear abscissa)
 \[
 \dot{e}_{i+1} = v_i \frac{\cos(\bar{\theta}_{2i})}{1 - c(s_i)y_i} - v_{i+1} \frac{\cos(\bar{\theta}_{2(i+1)})}{1 - c(s_{i+1})y_{i+1}} - d_i
 \]

 Control law expression for velocity may be deduced (w.r to robot i):
 \[
 v_{i+1} = \frac{1 - c(s_{i+1})y_{i+1}}{\cos(\bar{\theta}_{2(i+1)})} \left[v_i \frac{\cos(\bar{\theta}_{2i})}{1 - c(s_i)y_i} - K_{i+1} e_{i+1} \right]
 \]
Longitudinal dynamic control

Velocity control

- Other distance to be defined
 - If control is refereed only with respect to previous robot
 - Errors may be propagated over the formation
 - If previous robots stop, the follower will stop too
 - If the last one stops ???

Control with respect to robot i

- Same methodology, defining the distance with first robot considered as a leader
 - Only index and desired distance change
 - Error
 - $e_{i+1}^i = s_i - s_{i+1} - d_i$
 - $e_{i+1}^1 = s_1 - s_{i+1} - \sum d_m$
 - $v_{i+1} = \frac{1 - c(s_{i+1})y_{i+1}}{\cos(\tilde{\theta}_{2(i+1)})} \left[v_A \frac{\cos(\tilde{\theta}_{21})}{1 - c(s_1)y_1} - K_{i+1}^l e_{i+1}^1 \right]$
 - Control only with respect to the leader
 - No error propagation (a unique reference)
 - If a previous robot (except the leader) stops
 - If the last robot stops?
Hybrid distance regulation

- The velocity control may regulate several distance between robots

\[
u_{i}^{k} = \frac{1 - c(s_{i})y_{i}}{\cos(\theta_{i} + \beta_{R}^{i})} \left(\frac{\cos(\theta_{k} + \beta_{k}^{R})}{1 - c(s_{n})y_{n}} + k_{k}^{i} e_{i}^{k} \right)
\]

- Collection of n-1 control law (or n-1 relative distance)

\[
e_{i}^{k} = s_{i} - s_{k} - \sum_{j=k}^{i} d_{j}
\]

- Selection/weighting process

- Different functions: Safety/formation control/insertion...
Longitudinal dynamic control

Results without prediction

- Parameters
 - Leader: 2m/s
 - Desired dist.: constant = 9m
 - Lateral dev.: -2m
Predictive longitudinal dynamic control

Control law extension

- Predictive control 2: Feedforward and prediction

 Step 1: Feedforward - Future distance may be computed

 \[e_{i+1}^i = s_i - s_{i+1} - d_i \]

 \[e_{i+1}^i (t + H) = s_i (t + H) - s_{i+1} (t + H) - d_i \]

 Step 2: Future desired velocity is derived

 \[v_{ik}^k = \frac{1 - c(s_i) y_i}{\cos(\tilde{\theta}_i + \beta_R^k)} \left(\frac{\cos(\tilde{\theta}_k + \beta_R^k)}{1 - c(s_n) y_n} \right) + k_i^k e_i^k \]

 Step 3: Model predictive control is applied using future set point for velocity

Error and curvature are anticipated
Predictive longitudinal dynamic control

Results with 2 prediction levels

- Parameters
 - Leader: 2m/s
 - Desired distance: constant = 9m
 - Lateral set point: 3m
Motion control – 2 – Formation control results

Fixed configuration, robustness w.r to terrain geometry

Leader at 2m/s
Desired Long: 9m
Desired Lat: 1m
Inclination of 15°
Accuracy <15cm
Motion control – 2 – Formation control results

Variable configuration and predictive control interest

![Graphs showing interdistance and lateral deviation over curvilinear abscissa](image)
Overview

Classical motion control of robots
- Classical mobile robot modelling
- Limitations and accuracy requirements

Modeling in off-road conditions
- Extended kinematic model of a fleet of robots
- Observation of bad grip conditions

Control under bad grip conditions
- Lateral dynamic control
 - Extension of a single robot approach
 - Desired set point computation
 - Predictive approach
- Longitudinal dynamic control
 - Reactive approach
 - Relation with other robots
 - Predictive approach and motion anticipation

Extension to target tracking
- Common framework
- Algorithm generalization
Formation control with a free leader

Target may be manually controlled or directly a moving object

- Trajectory is not necessarily achievable
- Variations may be impossible to follow

The same control strategy may be used

- Similar model may be used
- Reference trajectory is viewed as successive target positions

\[
\begin{align*}
\Gamma & \quad \text{Moving target} \\
O & \quad y \\
& \quad \delta \\
& \quad \tilde{\theta} \\
& \quad s \\
& \quad v \\
& \quad d
\end{align*}
\]
Formation control with a free leader

Results with an achievable trajectory target

- target = remotely controlled robot
- Using RTK-GPS sensors
- All-terrain conditions
Formation control with a free leader

Results with an achievable trajectory target

- Trajectory followed

- Tracking errors

Formation control with a free leader

Actual results

- Without predefined reference Traj
 - speed: 2 m/s
 - WIFI communication

Variable lateral deviation 0 → 2m
Constant desired distance 12m
3 vehicles (2 robots considered)
High accuracy despite variations (slope, speed, ...)

![Diagram showing formation control results](image-url)
Formation control with a human target

Pedestrian following with a desired distance

- Using inertial navigation

- Using another type of robot

 Car like (v, δ)

 Skid steering $(v, \dot{\theta})$
Formation control with a human target

Pedestrian following with a desired distance

- Using inertial navigation
Robot cooperation in the framework of formation

Viewed as an extension of path tracking

- Longitudinal and lateral dynamics have discoupled
 - Using exact linearization of steering angle control (see course 1)
 - This may be true whatever the control strategy

- Lateral control
 - Steering angle or yaw rate, stay unchanged
 - But the set point is modified (relative lateral position)

- Longitudinal control (velocity)
 - Using a defined curvilinear distance
 - Elementary control law with respect to one robot
 - Extension and weighting of n-1 elementary control laws

- Predictive principles may be added to improve robustness with respect to settling times
 - 1. Feedforward control in order to anticipate for errors
 - 2. The future set point may be derived
 - 3. Model predictive control is then applied

In off-road conditions, it uses extended kinematic model...
Regarding robots an terrain interaction

- Grip conditions are addressed one by one
- Skidding estimation to be shown in next lecture

Regarding fleet management

- Obstacle avoidance and management
 - Perception problem w.r. to Numeric Terrain Model
 - Avoidance may be addressed using non null lateral set point
- Robot addition and removal
 - On-line modifications of control laws number
 - On-line modification of weighting functions

Regarding robots safety

- Safety distance must be ensured
 - Not necessarily compatible with desired set point (pending on speed)
 - Ability to compute safety distance?
- Control must account for localization accuracy and availability

Supervision process must manage desired distances and control laws